3.150 \(\int \sec ^5(c+d x) (a+a \sin (c+d x))^{7/2} \, dx\)

Optimal. Leaf size=106 \[ -\frac{a^{7/2} \tanh ^{-1}\left (\frac{\sqrt{a \sin (c+d x)+a}}{\sqrt{2} \sqrt{a}}\right )}{8 \sqrt{2} d}-\frac{a^2 \sec ^2(c+d x) (a \sin (c+d x)+a)^{3/2}}{8 d}+\frac{a \sec ^4(c+d x) (a \sin (c+d x)+a)^{5/2}}{2 d} \]

[Out]

-(a^(7/2)*ArcTanh[Sqrt[a + a*Sin[c + d*x]]/(Sqrt[2]*Sqrt[a])])/(8*Sqrt[2]*d) - (a^2*Sec[c + d*x]^2*(a + a*Sin[
c + d*x])^(3/2))/(8*d) + (a*Sec[c + d*x]^4*(a + a*Sin[c + d*x])^(5/2))/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.171282, antiderivative size = 106, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {2676, 2675, 2667, 63, 206} \[ -\frac{a^{7/2} \tanh ^{-1}\left (\frac{\sqrt{a \sin (c+d x)+a}}{\sqrt{2} \sqrt{a}}\right )}{8 \sqrt{2} d}-\frac{a^2 \sec ^2(c+d x) (a \sin (c+d x)+a)^{3/2}}{8 d}+\frac{a \sec ^4(c+d x) (a \sin (c+d x)+a)^{5/2}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^5*(a + a*Sin[c + d*x])^(7/2),x]

[Out]

-(a^(7/2)*ArcTanh[Sqrt[a + a*Sin[c + d*x]]/(Sqrt[2]*Sqrt[a])])/(8*Sqrt[2]*d) - (a^2*Sec[c + d*x]^2*(a + a*Sin[
c + d*x])^(3/2))/(8*d) + (a*Sec[c + d*x]^4*(a + a*Sin[c + d*x])^(5/2))/(2*d)

Rule 2676

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-2*b*
(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1))/(f*g*(p + 1)), x] + Dist[(b^2*(2*m + p - 1))/(g^2*(p +
1)), Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1] && LtQ[p, -1] && IntegersQ[2*m, 2*p]

Rule 2675

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[(b*(g
*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(a*f*g*(p + 1)), x] + Dist[(a*(m + p + 1))/(g^2*(p + 1)), Int[(
g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
 && GtQ[m, 0] && LeQ[p, -2*m] && IntegersQ[m + 1/2, 2*p]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sec ^5(c+d x) (a+a \sin (c+d x))^{7/2} \, dx &=\frac{a \sec ^4(c+d x) (a+a \sin (c+d x))^{5/2}}{2 d}-\frac{1}{4} a^2 \int \sec ^3(c+d x) (a+a \sin (c+d x))^{3/2} \, dx\\ &=-\frac{a^2 \sec ^2(c+d x) (a+a \sin (c+d x))^{3/2}}{8 d}+\frac{a \sec ^4(c+d x) (a+a \sin (c+d x))^{5/2}}{2 d}-\frac{1}{16} a^3 \int \sec (c+d x) \sqrt{a+a \sin (c+d x)} \, dx\\ &=-\frac{a^2 \sec ^2(c+d x) (a+a \sin (c+d x))^{3/2}}{8 d}+\frac{a \sec ^4(c+d x) (a+a \sin (c+d x))^{5/2}}{2 d}-\frac{a^4 \operatorname{Subst}\left (\int \frac{1}{(a-x) \sqrt{a+x}} \, dx,x,a \sin (c+d x)\right )}{16 d}\\ &=-\frac{a^2 \sec ^2(c+d x) (a+a \sin (c+d x))^{3/2}}{8 d}+\frac{a \sec ^4(c+d x) (a+a \sin (c+d x))^{5/2}}{2 d}-\frac{a^4 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\sqrt{a+a \sin (c+d x)}\right )}{8 d}\\ &=-\frac{a^{7/2} \tanh ^{-1}\left (\frac{\sqrt{a+a \sin (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{8 \sqrt{2} d}-\frac{a^2 \sec ^2(c+d x) (a+a \sin (c+d x))^{3/2}}{8 d}+\frac{a \sec ^4(c+d x) (a+a \sin (c+d x))^{5/2}}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.291257, size = 108, normalized size = 1.02 \[ \frac{2 a^3 (\sin (c+d x)+3) \sqrt{a (\sin (c+d x)+1)}-\sqrt{2} a^{7/2} \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )^4 \tanh ^{-1}\left (\frac{\sqrt{a (\sin (c+d x)+1)}}{\sqrt{2} \sqrt{a}}\right )}{16 d (\sin (c+d x)-1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^5*(a + a*Sin[c + d*x])^(7/2),x]

[Out]

(-(Sqrt[2]*a^(7/2)*ArcTanh[Sqrt[a*(1 + Sin[c + d*x])]/(Sqrt[2]*Sqrt[a])]*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])
^4) + 2*a^3*Sqrt[a*(1 + Sin[c + d*x])]*(3 + Sin[c + d*x]))/(16*d*(-1 + Sin[c + d*x])^2)

________________________________________________________________________________________

Maple [A]  time = 0.145, size = 75, normalized size = 0.7 \begin{align*} -2\,{\frac{{a}^{5}}{d} \left ( -1/16\,{\frac{\sqrt{a+a\sin \left ( dx+c \right ) } \left ( 3+\sin \left ( dx+c \right ) \right ) }{ \left ( a\sin \left ( dx+c \right ) -a \right ) ^{2}}}+1/32\,{\frac{\sqrt{2}}{{a}^{3/2}}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a+a\sin \left ( dx+c \right ) }\sqrt{2}}{\sqrt{a}}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^5*(a+a*sin(d*x+c))^(7/2),x)

[Out]

-2*a^5*(-1/16*(a+a*sin(d*x+c))^(1/2)*(3+sin(d*x+c))/(a*sin(d*x+c)-a)^2+1/32/a^(3/2)*2^(1/2)*arctanh(1/2*(a+a*s
in(d*x+c))^(1/2)*2^(1/2)/a^(1/2)))/d

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*(a+a*sin(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.77725, size = 382, normalized size = 3.6 \begin{align*} \frac{{\left (\sqrt{2} a^{3} \cos \left (d x + c\right )^{2} + 2 \, \sqrt{2} a^{3} \sin \left (d x + c\right ) - 2 \, \sqrt{2} a^{3}\right )} \sqrt{a} \log \left (-\frac{a \sin \left (d x + c\right ) - 2 \, \sqrt{2} \sqrt{a \sin \left (d x + c\right ) + a} \sqrt{a} + 3 \, a}{\sin \left (d x + c\right ) - 1}\right ) - 4 \,{\left (a^{3} \sin \left (d x + c\right ) + 3 \, a^{3}\right )} \sqrt{a \sin \left (d x + c\right ) + a}}{32 \,{\left (d \cos \left (d x + c\right )^{2} + 2 \, d \sin \left (d x + c\right ) - 2 \, d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*(a+a*sin(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

1/32*((sqrt(2)*a^3*cos(d*x + c)^2 + 2*sqrt(2)*a^3*sin(d*x + c) - 2*sqrt(2)*a^3)*sqrt(a)*log(-(a*sin(d*x + c) -
 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*sqrt(a) + 3*a)/(sin(d*x + c) - 1)) - 4*(a^3*sin(d*x + c) + 3*a^3)*sqrt(a*s
in(d*x + c) + a))/(d*cos(d*x + c)^2 + 2*d*sin(d*x + c) - 2*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**5*(a+a*sin(d*x+c))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*(a+a*sin(d*x+c))^(7/2),x, algorithm="giac")

[Out]

Timed out